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Analysis of the Total Number of Twists Resulting from Cutting
any Order Moebius Band with any Number of Cuts

ErIKk OLIN WRIGHT

Introduction
Consider Figure 1,

A, A,

Figure 1.

2

If one end of this rectangle is given k half-twists' and then joined to the
other end, a Moebius band of order k is formed.2 In all odd order bands

- 1One half-twist = 180° rotattion. In the text of this repot, I will use the terms balf-
twmff :}rlxd’ J,ay;ﬂ indiscriminately, When I mean a:full twist (a. 360° rotation) I will explicitly
say full twist; Co SR
2 Arnold, - Bradford Hen

o Intuitive Con‘ée ts_in lementary Topolo Englewood Cliffs,
N.).: Prentice-Hall, 1962). i p ! 7 pology (Eng
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A, is joined to B, and B, to A,, whereas in all even order bands A, is
joined to A, and B, is joined to B, (Fig. 2).

A B A A,

B, A, B B

Figure 2.

The odd order bands are characterized by having only one side and
one edge, i.e., any two points may be joined without crossing a boundary
of the figure. An even order band, however, is not unilateral and is
topologically equivalent to a circular right cylinder.

An interesting phenomenon associated with the Moebius band
occurs when a band is cut lengthwise (Fig. 3). For example, if 2 band
of order 1 is cut with 1 cut, a single band of 4 half-twists results, rather
than the anticipated two bands of 1 twist each. When this band in turn
is cut, two interlocking bands of 4 twists each are produced. In general,
when a Moebius band is cut, the result is either a higher order band, or
several linked bands of varying orders. The one exception is the trivial
case of a band of order zero, in which the resulting bands are always
unlinked bands of zero twists.

Figure 3. Moebius band of order 1, with the path of cut indicated.

That the result of cutting a Moebius band is indeed some sort of
Moebius band or bands, and not some other figure is intuitivly obvious
and is verified by a diagramatic ‘representation of the cutting process
(Fig. 4). |

This paper is concerned with the number of twists resulting when
any order band is cut with any number of cuts. Strictly speaking, this
is not a topological consideration, because “twist” is a topological
characteristic only so far as it determines evenness or oddness. Although
topologically there is no difference between a band of order 1 and 7,
geometrically there is. ‘
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Figure 4. Diagramatic representation of the cutting process: A, an odd order is cut
once, and an even order results; B, an odd order is cut twice, and two disjoint bands
result; all other number of cuts with an odd order band are just combinations of 4(a) and
4(b); C, an even order band is cut by k cuts, and (k 4+ 1) bands of the same order result.
Note: /\ indicates the operation of cutting

This particular aspect of the Moebius band, namely number of twists,
has been largely ignored because the Moebius band has been considered
solely a topological problem. To my knowledge, no analysis relating to
the number of twists resulting from cutting any order band has been
made. Thus, the formula developed in this study is the first of its
nature, as far as I know.

Definitions

1. Cut—A smgle cut is formed by piercing the band half way
between the “edges” of the band, and cutting around the figure until
the starting point is met (Fig. 3). In general, k cuts are formed
by piercing the band at k points equally spaced along the perpendicular
to one edge of the band, and cutting these parallel to the edge until each
cut joins a starting point. In an even order band a given cut will always
join its own starting point, whereas in an odd order band, this is not the
case except for the middle cut (Fig. 5).

2. Ny—number of half-twists.

3. N;—number of cuts.

4 A—indicates the operation of cutting

5. N, A N,—indicates sum of the total number of half-twists in
the Moebius bands that are formed when a band of N, half-twists is cut
N, number of times.
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Edge |

Figure 5. Ki=2

6. Coherence of twists—any given band may be formed by twisting
the band in one of two directions. One of these directions subtracts, and
the other adds twists to the number already present. Two twists are
said to be coherent if they are formed by twisting in a like manner (i.e,
added to each other). The statement, “If two twists are coherent with 2
third twist, they are coherent with cach other,” follows immediately from
the definition itself.

Introduction to the Proof
The basic equation to be verified is:

Ne ANe=NNe 4 {(Ne + V5 [1 — (=1)¥]) (Y2[1 — (—=1)™])}
An inductive proof is used, based on the following theorems or
inductive formulae:

Theorem (1):

If N, is odd, and N, > 2, then

N AN, = [(Nt/\z) —N]—]—Nt/\ (N, —2).
Theorem (2):

If N, is even, and N, > 1, then

Nt/\Nc: [(Nt/\ 1) _Nt] +Nt/\ (Nc— 1)
Theorem (3):

N; AN, = (N, —2) /\ N.+ 2 AN, (prov1ded that N, > 2, for
— 2 has no meaning if
N < 2).
Theorems (1) and (2) are used to mduct on the number of cuts
and theorem (3) on the number of twists.

Proof of Theorems

Theorem (1):
If N, is odd, and N, > 2, then
N, AN, = [(N,A2) —N] - N A (N, — 2).
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Consider one section of any odd order band to be cut by N, cuts
(Fig. 6). If cut 1 and cut N, are cut completely around the figure, thus
cutting the band by 2, N, will join with 1, and 1 with N,. The total
number of twists in the system is now N, A 2, consisting of the shaded
and unshaded portions of Fig. 6.
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Figure 6.
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As illustrated in Fig. 4(b), the shaded area is disjoint, though inter-
linked with the unshaded area. The unshaded area contains the original
number of twists, N, and since the entire system contains N A 2 twists,
the shaded area must contain (N, A 2) — N twists, (i.e., total number
minus the number in the unshaded area).

The unshaded area is still to be cut by N, — 2 more cuts. Since
each pair of remaining cuts, (cut 2 and cut N, — 1; cut 3 and cut N, —
2; etc.), remain completely in the unshaded area, there is no interaction
between them and cuts 1 and N..

Thus N, A N, = shaded area -}- unshaded area A (N, — 2). :
But the shaded area — (N, A 2) — N, and the unshaded area =
Nt)

SN AN, = [(N; A 2) —N,] 4+ N, A (N, — 2).

The proof for theorem (2) is analagous, except that cut 1 meets
itself when cut completely around the band, and thus the number of cuts
may be reduced by 1 instead of 2 as follows:

N AN, = [(N, A1) —N] + N A (N, —1).
Theorem (3):
N, AN, = (N, —2) AN, 4+ 2AN,, (N; > 2).

To begin with, examine the case in which N is always even, (ie,
N, = 2n). Theorem (3) then reads:

20 AN, = (2n — 2) AN, +2 AN,, and shall be referred to as heo-
rem (3a).

The case n =1 is ttivial because (2-1) A N, obviously equals 0 AN,
4+ 2AN,. The truth for n=2 is proven by inducting on N, in
theorem (3a). ‘

When n = 2, theorem (3a) appeats as:
(2-2) AN, =2 AN, +2AN..
For N, =1,
(2:2) AN1=8=2A1-42A1 (Empirically true)
Assume truth for N, = K: |
(2-2) NK=2AK+2AK;
Then the proof for N, = (K 4- 1) proceeds as follows:

@ DAKFD)=[(2 DA — (2 2)]+ (2 2) A(K+1) 1]
- Theorem (2)
=[(4AN1) —4]+ (2-2) AK

But, [(4 A1) —4] = [8 — 4] — 4; (empirical observation)
And, (2-2) AK=2AK+2AK, (inductive hypothesis)
—2 (2 AK);
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S )N KAL) =442(2AK), The question now exists what happens when this system is cut
=2 (242 AK). . completely around with N, cuts. If the twists resulting from cutting B
(i.e,, 1 AN,), and the twists resulting from cutting C (ie, 1 AN,),
Now, 2[2 A (K+1)] =2 {[(2A 1) —2] + 2 AK]}, (Theorem 2} _ both add to the twists resulting from cutting A (ie., (n—2) AN,),
=2{[(4) —2] +2AK}, ﬁ this is essentially the same as saying n A N, = (n — 2) AN, 4 2 AN,
(empirical observation)) . since T AN, +1AN,=2AN, (see page ..... N.B. Here we are
=2(2+2AK), [E speaking in terms of whole-twists whereas on page ... in half-twists).
. v The proof that B and C in fact do add to A is simple: If section
ie,2242AK)=22A K+ 1] C of the system is ignored, and sections A and B cut with N, cuts, the
But. (2-2 K — twists resulting from cutting B must add to A because this is the case
ut, ( YA (K1) =22+ 2AK), for n — 1, ie,
L@ ANEKt D) =22A K+ D] (1—1) ANy= (n —2) AN, 41 AN, =A AN, +BAN,
=2A K41 +2A K+, which is necessarily true since the inductive hypothesis is that n is the
Therefore, theorem (3a) is true for all N, when n — 2. The proof smallest value for which (3a) is false. Similarly, C and A will add
for n = 3 is accomplished in an identical manner. Thus, theorem (3a) when cut jointly while B is ignored.
holds true for n =1, 2, 3. Now, since the twists in sections B and C are both coherent with
The proof of the equation in general will be based on the inductive A, they are coherent with each other, and thus won't cancel each other
Procedure: ”every non.empty set of pogitive integers‘ has a smallest Jout; and since each mdxvxdually adds to A, they must therefore ]Oll’ltly
member.” The set under consideration is the set of all n such that (3a) add to A.
is false. It will be proven that this set has no smallest member and thus ) Thus NAN,=AAN, 4 BAN.+ CAN,,
is empty, by showing that whenever (3a) is true for n—1, it is true
for n. =(n—2) AN, +-1AN,+1AN,
© Since (3a) is true for n = 1, 2, 3, the smallest n for which it could =(n—2) AN, 4+ 2AN.
be false is n > 4. If n is the smallest value for which (3a) is false, .
then n — 1, n-—2, . . ., must satisfy the equation. The proof that n Since (n —1) AN = (n—2) AN+ 1 AN,
(number of full-twists, not half-twists) must be true if n—1 is true (0 —2) AN, =(n—1) AN, — 1 AN..
proceeds as follows: A AN, — 2) AN. 4 2 AN
Take a band of n coherent full-twists, n being the smallest value for -0 = (n—2) ot ¢
which (3a) is false, and n thus > 4. “Pinch off,” or isolate two full =[(n—1) AN;— (LAN)] +2AN,
twists, one at each end of the band, so that the system appears as digram- =(n—1) AN, +1AN,

tically represented in Fig. 7.

ie, 20 AN, = (20 —2) AN, 42 AN,.

n Full Twists Therefore theorem (3a) is true for n; therefore, the set of n such
,[ | that (3a) is false, is empty; therefore, (3a) is universally true.
The proof for theorem (3) for an odd number of twists proceeds in
an analagous fashion.
With the inductive theorems established, the proof of the formula:

NAN=NNANA-{ (N5 [1—(—=1)%]) (2 [1—(=1)¥]) }

will easily follow.
The equation is broken down into three cases as follows:

‘7‘« — | 3 (I) Even N;AN, ie,, 2m A n = 2mn -} 2m

|
- . T . (II) Odd N; AevenN, te, 2m —1) A 2n=4mn2m—1
| Wi u wis wis .
Fu st I fs Ist (II) 0dd N, AoddN, e, (2m—1) A (20 — 1) = 4mn x
Figure 7. If n is given as the smallest value for which (3a) is false (thus n > 4) then . . . .
ifn A N=AAN,+ BAN,+ CA N, the set of false n is empty, and thus (3a) where m and n are positive integers, relating to twists and cuts respec-
would be universally true. tively.
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The inductive formulae previously described will serve as the basis
for the development of the proofs. Additionally, in each proof, one
empirical observation (either 2 A1 =4; TA2=275; or 1A1=4)"is
necessary to establish the equations for all m and n.

Preof of Cases
CASE T: Even N; AN,, ie, 2mAn=2mn-4 2m

Part 1. Let m be fixed, m — 1, then Case I becomes

2/An=2n-2.
Forn—=1,

2 N1 =4, (empirically true) —=2-1-1 421 = 2mn - 2m,
Assume the truth for n = K:

2AK=2K 4 2.

Then the proof for n = (K 4- 1) proceeds as follows:
2AN(K+1) =[(2A1) —2] +2AK (theorem 2)
=[(4) —2]+2AK (empirical observation)
=2+2AK

But, 2 AK=2K 4} 2 (inductive hypothesis)

2N (K4 =242Kp2 =2K44 =21 (K41) 4-2-1
= 2mn + 2m

Therefore, by induction the equation is correct for all n if m = 1;
ie, (1,n) always satisfy Case I

Part 2. Suppose the formula is 70f universally true, then there is
a pair (m,n) of integers such that it is false. There is, by the principle
previously used, a smallest m for which there is a smallest n such that
Case I is false.

To verify Case I, it suffices to show that the set of (m,n) such that
Case I is false is empty, by showing that, in fact, there is 7o smallest m
for which there is a smallest n such that Case I is false.

If the smallest 2 for which there is a smallest » such that Case I is
false is denoted ]?y (my,n;), the equation must be true for the pair
((my — 1), ny), ie, 2(m; — 1) Any, = 2(m; — 1)n;, 4 2(m; — 1)
= 2m,n; — 2n; 4 2m; — 2.

Examine Case I using the pair (my,n;: 2m; A n,.
By thereom 3: 2m, An, = (2m; —2) A n; 42 Ang;
but (2m; — 2) Any =2(m; — 1) A n, = 2myn; — 20, -+ 2m; — 2,
and 2 A n, = 2n; -} 2, as proven in Part of Case I.
Je2mg Aoy = (2myn; — 20y -4 2my — 2) - (20, 4+ 2)
= 2myny 4 2m,.
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This is identical to the equation for Case I, therefore, the pair
(my,n,) satisfies the equation. Thus, you cannot find an m for which
there exists an n making Case I false. Therefore, the set of false values
for Case I is empty, and thus it is universally true.

CASE II: Odd N, A even N, ie, (2Zm — 1) A2n=4mn -+ 2m —1
Part 1. Let m be fixed, m — 1, then Case II becomes
1A 2n=4n-}1.
Forn=1, ‘
1A 2=>5 (empirically) =4-1-142-1—1=4dmm42m—1.
Assume truth for n = K:
1N2K=4K -} 1;
Then the proof for n= (K 4- 1) proceeds as follows:

IA2(K4+-1) =[(1A2) —1] +1A2K, (theotem 1).
But [(1A2) —1]=[5—1] =4 (empirically true);
And 1 A 2K =4K 1, (inductive hypothesis) ;
CIAN2(K A1) =44 4K 41 =4K 45

—4(K4+1)+1.

Therefore, by induction the equation is correct for all n if m = 1.

Part 2. The proof for the equation in general proceeds as in Part
2 of Case I. The same nctation will be used: (my,n,) for the “smallest
m for which there is an n such that the equation is false.” That m,
cannot be one is established in Part 1. Also it cannot be zero, for if it
were, (m; — 1) would be meaningless.

By a similatr analysis as previously used, ((m; — 1),n,), must
satisfy Case II:

ie: [2(m; —1) —1] A 20y =4(m; — )n, +2(m; — 1) — 1

— 4m;n, — 4n, 4 2m; — 3

By theotem (3):

(2m; — 1) A 2ny = (2my; — 3) A 20, + 2 A 2ny;

but (2m; —3) A 2n, = [2(m; — 1) —1] A 2n,
= 4myn, — 4n; - 2m; — 3,  (inductive

hypothesis)

and 2 N 2n, = 4n, -+ 2 by Case I.

Joo(2my — 1) A 20y = (4myn, — 40, - 2my — 3) - (40, 4 2)
= 4m;n, -}- 2m; — 1.

This is identical to the equation for Case II using (m,, n,); there-

fore, the pair (m, n,) satisfies the equation. Thus the set of false values
for Case II is empty; thus Case II is universally true.
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CASE III: OddN; Aodd N, ie, (2m —1) A (2n — 1) = 4mn

Part 1. Let me be fixed, m — 1, then Case III becomes
1A (211— 1) — 4n.

Forn—=1,
1 A1 =4 (empirically true) = 4-1+1 = 4mn.

Assume the truth for n = K:
1A (2K —1) =4K.

Then the proof for n = (K - 1) proceeds as follows:

IAT2(K4+1) —1] =1 A (2K 4+ 1)

=[(1A2) —1] + 1A (2K —-1);
(theorem 1)
but, [(1 A2) —1] =4, (empirical observation)

and [1A 2K —1)] =4K (inductive hypothesis)
CULA[2(K 4 1) — 1] = 4K - 4 = 4(K - 1) = 4mn.

Therefore, by induction the equation is correct for all n if m = 1.

Part 2. The proof for all (m,n) follows the same pattern as in
Cases I and II. Again (mng, n;) has the same meaning as before; thus,
the pair ((m,; — 1), n,) must satisfy the equation,

fe. [2(my —1) —1] A (3ny —1) =4(m, + 1)n; = 4myn, — 4n,.

By theorem (3):
(2m;—1)A(2n;—1) =(2m;—3) A (2n;—1) 42/ (2n,—1).

But (2m; — 3) A (20, — 1) = [2(m, — 1) — 1] A (20, — 1)

= 4m;n, — 4n,.
And (2-1)A(@2ny —1)=2-1-(2n, —1) +2-1 (Case 1)
= 4n; — 2 4+ 2 = 4n,. :
Jo(2mg — 1) A (20 — 1) = (4myn, — 4ny) - 4n; — 4myn,.
This is equivalent to the equation for Case III, therefore (m,, n,)

satisfies the equation, and consequently, the set of false values for Case
III is also empty, thus making the equation universally true,

‘Thus, through induction, Cases I, II and III are all universally true
because the set of false values for the equations is empty, and conse-
quently the combined equation:

NANENNeAN A (N o[- (— 1)) (Y [1— (—1)%1))

must be universally true.
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Second Form of the Equation

A more informative form of the above equation would be one
in which not only the total number of twists resulting from cutting
would appear, but also the number of bands of each number of twists.
For example: 1 A 5 = 13 — 3 bands of 4 twists each, and 1 band of 1
twist. As a direct result of the proofs of Theorems 1 and 2, the follow-
ing form of the above equation yields this information. The coefficients
of the terms in the square brackets are the number of bands of the
number of twists indicated within the square brackets.

NAN, = (No 4 1) (1) (14 (—i)™) [Nth

N, +1 . B
ETD g — (=0 — (- [Nt |+

(N.)

(Vo) (1 — (1% (1 + (—1)¥) | N A1 [+

L

(1) (V) (1 — (—1)¥) (1 4 (—1)™ [N}

where
N, A 1=2N, -+ 2(1 — (1))

The proof proceeds trivially from the proofs of Thoerems 1 and 2.
Examine the case odd N, A oddN,. As indicated in the proof of
Theorem 1, cut 1 joins cut N, cut 2 joins cut N, — 1, etc. Since there
is an odd number of cuts, the last cut joins itself. After only the first cut
and the last cut are joined, the system contains a total of (N; A1) 4 Ny
twists, consisting of one band of (N, A 1) twists and one band of N,
twists. All additional cuts, as demonstrated in the proof of Therem 1,
take place in the single band of N, twists. When the second cut joins
the next to the last cut, there is a total of two bands of (N, A 1) twists
and one of N twists. Continuing in this fashion, when all the pairs of

—1

cuts have been joined, the system contains —° " bands of (N, A1)
2

twists and one band of N, twists . But this single band is yet to be cut

A N,—1
one more time and thus-the system contains —° " bands of (N, A1)
. 2

N, 41
twists plus one band of (N, A 1) twists, or a total of ——-;—*:- bands of

P4

N; A 1 twists. This appears in the above equation as

N.+1
BED 4y — (09— (-5 [Moa ]
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The expression (1) (1 — (—1)¥¢) (1 — (—1)¥e) serves merely to reg-
ulate this term of the equation for the eveness of oddness of N, and N.,.
The proof for the case odd N, A even N, is identical, except that all the
cuts are paired and thus there remains a single band of N, twists. The
proof of the even N; A N, case follows in the similar fashion from
Theorem 2.
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